Initial assessment of the spatial learning, reversal, and sequencing task capabilities of knock-in rats with humanizing mutations in the Aβ-coding region of App

对 App 的 Aβ 编码区人源化突变敲入大鼠的空间学习、逆转和排序任务能力的初步评估

阅读:5
作者:Hoa Pham, Tao Yin, Luciano D'Adamio

Abstract

Model organisms mimicking the pathogenesis of human diseases are useful for identifying pathogenic mechanisms and testing therapeutic efficacy of compounds targeting them. Models of Alzheimer's disease (AD) and related dementias (ADRD) aim to reproduce the brain pathology associated with these neurodegenerative disorders. Transgenic models, which involve random insertion of disease-causing genes under the control of artificial promoters, are efficient means of doing so. There are confounding factors associated with transgenic approaches, however, including target gene overexpression, dysregulation of endogenous gene expression at transgenes' integration sites, and limitations in mimicking loss-of-function mechanisms. Furthermore, the choice of species is important, and there are anatomical, physiological, and cognitive reasons for favoring the rat over the mouse, which has been the standard for models of neurodegeneration and dementia. We report an initial assessment of the spatial learning, reversal, and sequencing task capabilities of knock-in (KI) Long-Evans rats with humanizing mutations in the Aβ-coding region of App, which encodes amyloid precursor protein (Apph/h rats), using the IntelliCage, an automated operant social home cage system, at 6-8 weeks of age, then again at 4-5 months of age. These rats were previously generated as control organisms for studies on neurodegeneration involving other knock-in rat models from our lab. Apph/h rats of either sex can acquire place learning and reversal tasks. They can also acquire a diagonal sequencing task by 6-8 weeks of age, but not a more advanced serial reversal task involving alternating diagonals, even by 4-5 months of age. Thus, longitudinal behavioral analysis with the IntelliCage system can be useful to determine, in follow-up studies, whether KI rat models of Familial AD (FAD), sporadic late onset AD (LOAD), and of ADRD develop aging-dependent learning and memory deficits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。