12-Hydroxyjasmonic acid glucoside causes leaf-folding of Samanea saman through ROS accumulation

12-羟基茉莉酸葡萄糖苷通过 ROS 积累引起 Samanea saman 的叶子卷曲

阅读:3
作者:Gangqiang Yang, Yasuhiro Ishimaru, Shunji Hoshino, Yuki Muraoka, Nobuyuki Uozumi, Minoru Ueda

Abstract

Foliar nyctinasty, a circadian rhythmic movement in plants, is common among leguminous plants and has been widely studied. Biological studies on nyctinasty have been conducted using Samanea saman as a model plant. It has been shown that the circadian rhythmic potassium flux from/into motor cells triggers cell shrinking/swelling to cause nyctinastic leaf-folding/opening movement in S. saman. Recently, 12-hydroxyjasmonic acid glucoside (JAG) was identified as an endogenous chemical factor causing leaf-folding of S. saman. Additionally, SPORK2 was identified as an outward-rectifying potassium channel that causes leaf-movement in the same plant. However, the molecular mechanism linking JAG and SPORK2 remains elusive. Here, we report that JAG induces leaf-folding through accumulation of reactive oxygen species in the extensor motor cells of S. saman, and this occurs independently of plant hormone signaling. Furthermore, we show that SPORK2 is indispensable for the JAG-triggered shrinkage of the motor cell. This is the first report on JAG, which is believed to be an inactivated/storage derivative of JA, acting as a bioactive metabolite in plant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。