Learning-related translocation of δ-opioid receptors on ventral striatal cholinergic interneurons mediates choice between goal-directed actions

腹侧纹状体胆碱能中间神经元上δ-阿片受体的学习相关易位介导目标导向行动之间的选择

阅读:5
作者:Jesus Bertran-Gonzalez, Vincent Laurent, Billy C Chieng, MacDonald J Christie, Bernard W Balleine

Abstract

The ability of animals to extract predictive information from the environment to inform their future actions is a critical component of decision-making. This phenomenon is studied in the laboratory using the pavlovian-instrumental transfer protocol in which a stimulus predicting a specific pavlovian outcome biases choice toward those actions earning the predicted outcome. It is well established that this transfer effect is mediated by corticolimbic afferents on the nucleus accumbens shell (NAc-S), and recent evidence suggests that δ-opioid receptors (DORs) play an essential role in this effect. In DOR-eGFP knock-in mice, we show a persistent, learning-related plasticity in the translocation of DORs to the somatic plasma membrane of cholinergic interneurons (CINs) in the NAc-S during the encoding of the specific stimulus-outcome associations essential for pavlovian-instrumental transfer. We found that increased membrane DOR expression reflected both stimulus-based predictions of reward and the degree to which these stimuli biased choice during the pavlovian-instrumental transfer test. Furthermore, this plasticity altered the firing pattern of CINs increasing the variance of action potential activity, an effect that was exaggerated by DOR stimulation. The relationship between the induction of membrane DOR expression in CINs and both pavlovian conditioning and pavlovian-instrumental transfer provides a highly specific function for DOR-related modulation in the NAc-S, and it is consistent with an emerging role for striatal CIN activity in the processing of predictive information. Therefore, our results reveal evidence of a long-term, experience-dependent plasticity in opioid receptor expression on striatal modulatory interneurons critical for the cognitive control of action.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。