CCAAT/enhancer-binding protein β expressed by bone marrow mesenchymal stromal cells regulates early B-cell lymphopoiesis

骨髓间充质基质细胞表达的CCAAT/增强子结合蛋白β调节早期B细胞淋巴细胞生成

阅读:5
作者:Satoshi Yoshioka, Yasuo Miura, Hisayuki Yao, Sakiko Satake, Yoshihiro Hayashi, Akihiro Tamura, Terutoshi Hishita, Tatsuo Ichinohe, Hideyo Hirai, Akifumi Takaor-Kondo, Taira Maekawa

Abstract

The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) regulates the differentiation of a variety of cell types. Here, the role of C/EBPβ expressed by bone marrow mesenchymal stromal cells (BMMSCs) in B-cell lymphopoiesis was examined. The size of the precursor B-cell population in bone marrow was reduced in C/EBPβ-knockout (KO) mice. When bone marrow cells from C/EBPβ-KO mice were transplanted into lethally irradiated wild-type (WT) mice, which provide a normal bone marrow microenvironment, the size of the precursor B-cell population was restored to a level equivalent to that generated by WT bone marrow cells. In coculture experiments, BMMSCs from C/EBPβ-KO mice did not support the differentiation of WT c-Kit(+) Sca-1(+) Lineage(-) hematopoietic stem cells (KSL cells) into precursor B cells, whereas BMMSCs from WT mice did. The impaired differentiation of KSL cells correlated with the reduced production of CXCL12/stromal cell-derived factor-1 by the cocultured C/EBPβ-deficient BMMSCs. The ability of C/EBPβ-deficient BMMSCs to undergo osteogenic and adipogenic differentiation was also defective. The survival of leukemic precursor B cells was poorer when they were cocultured with C/EBPβ-deficient BMMSCs than when they were cocultured with WT BMMSCs. These results indicate that C/EBPβ expressed by BMMSCs plays a crucial role in early B-cell lymphopoiesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。