In Utero Electroporated Neurons for Medium-Throughput Screening of Compounds Regulating Neuron Morphology

宫内电穿孔神经元用于中通量筛选调节神经元形态的化合物

阅读:6
作者:Aidan M Sokolov, Mariana Aurich, Angélique Bordey

Abstract

Several neurodevelopmental disorders are associated with increased mTOR activity that results in pathogenic neuronal dysmorphogenesis (i.e., soma and dendrite overgrowth), leading to circuit alterations associated with epilepsy and neurologic disabilities. Although an mTOR analog is approved for the treatment of epilepsy in one of these disorders, it has limited efficacy and is associated with a wide range of side effects. There is a need to develop novel agents for the treatment of mTOR-pathway related disorders. Here, we developed a medium-throughput phenotypic assay to test drug efficacy on neurite morphogenesis of mouse neurons in a hyperactive mTOR condition. Our assay involved in utero electroporation (IUE) of a selective population of cortical pyramidal neurons with a plasmid encoding the constitutively active mTOR activator, Rheb, and tdTomato. Labeled neurons from the somatosensory cortex (SSC) were cultured onto 96-well plates and fixed at various days in vitro or following Torin 1 treatment. Automated systems were used for image acquisition and neuron morphologic measurements. We validated our automated approach using traditional manual methods of neuron morphologic assessment. Both automated and manual analyses showed increased neurite length and complexity over time, and decreased neurite overgrowth and soma size with Torin 1. These data validate the accuracy of our automated approach that takes hours compared with weeks when using traditional manual methods. Taken together, this assay can be scaled to screen 32 compounds simultaneously in two weeks, highlighting its robustness and efficiency for medium-throughput screening of candidate therapeutics on a defined population of wild-type or diseased neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。