HDAC inhibitor suppresses proliferation and tumorigenicity of drug-resistant chronic myeloid leukemia stem cells through regulation of hsa-miR-196a targeting BCR/ABL1

HDAC抑制剂通过调控hsa-miR-196a靶向BCR/ABL1抑制耐药慢性粒细胞白血病干细胞的增殖和致瘤性

阅读:5
作者:Oluwaseun Adebayo Bamodu, Kuang-Tai Kuo, Li-Ping Yuan, Wei-Hong Cheng, Wei-Hwa Lee, Yuan-Soon Ho, Tsu-Yi Chao, Chi-Tai Yeh

Abstract

Failure to eradicate hematologic cancer stem cells (hCSCs) associated with resistance to tyrosine kinase inhibitors such as imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients is a clinical challenge that highlights the need for discovering and developing therapeutic strategies that target and eliminate these hCSCs. Herein, we document the essential role of the interplay between histone deacetylases (HDACs), the polycomb group proteins, pluripotency transcription factors and the cell cycle machinery in the viability, oncogenicity and therapy evasion of IM-resistant CD34+/CD38- CML stem cells (CML-SCs). Using the proteotranscriptomic analyses of wild type (WT), CD34+/CD38+ and CD34+/CD38- K562 or KU812 cells, we showed that CD34+/CD38- SC-enriched cells expressed significantly higher levels of CD44, CD133, SOX2, Nanog, OCT4, and c-Myc mRNA and/or protein, compared to the WT or CD34+/CD38+ cells. This overexpression of stemness factors in the CD34+/CD38- cells positively correlates with enhanced expression of HDACs 1-6, cyclins D1/D3, CDK 2, 4 and 6, while inversely correlating with p18, p21 and p27. Enhanced co-expression of MDR1, survivin, and Bcl-2 proteins, supposedly involved in IM-resistance and CML-SC survival, was detected in both CD34+/CD38- and CD34+/CD38+ cells. Importantly, we demonstrate that in synergism with IM, SAHA reverses the tumor-promoting proteotranscriptomic profile noted above and elicits marked inhibition of the CML-SCs by up-regulating hsa-miR-196a expression. This hsa-miR-196a-mediated SC-limiting effect of SAHA is dose-dependent, low-dosed, cell cycle-modulating and accompanied by leukemic SC apoptosis. Interestingly, this anti-SC therapeutic activity of SAHA in vitro was reproduced in vivo using the NOD-SCID mice models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。