Dependence receptor involvement in subtilisin-induced long-term depression and in long-term potentiation

依赖受体参与枯草杆菌蛋白酶诱导的长期抑郁和长期增强

阅读:5
作者:Trevor W Stone, L Gail Darlington, Caroline M Forrest

Abstract

The serine protease subtilisin induces a form of long-term depression (LTD) which is accompanied by a reduced expression of the axo-dendritic guidance molecule Unco-ordinated-5C (Unc-5C). One objective of the present work was to determine whether a loss of Unc-5C function contributed to subtilisin-induced LTD by using Unc-5C antibodies in combination with the pore-forming agents Triton X-100 (0.005%) or streptolysin O in rat hippocampal slices. In addition we have assessed the effect of subtilisin on the related dependence receptor Deleted in Colorectal Cancer (DCC) and used antibodies to this protein for functional studies. Field excitatory postsynaptic potentials (fEPSPs) were analyzed in rat hippocampal slices and protein extracts were used for Western blotting. Subtilisin produced a greater loss of DCC than of Unc-5C, but the antibodies had no effect on resting excitability or fEPSPs and did not modify subtilisin-induced LTD. However, antibodies to DCC but not Unc-5C did reduce the amplitude of theta-burst long-term potentiation (LTP). In addition, two inhibitors of endocytosis - dynasore and tat-gluR2(3Y) - were tested and, although the former compound had no effect on neurophysiological responses, tat-gluR2(3Y) did reduce the amplitude of subtilisin-induced LTD without affecting the expression of DCC or Unc-5C but with some loss of PostSynaptic Density Protein-95. The results support the view that the dependence receptor DCC may be involved in LTP and suggest that the endocytotic removal of a membrane protein or proteins may contribute to subtilisin-induced LTD, although it appears that neither Unc-5C nor DCC are involved in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。