Heat Stress Factors Expressed during Seed Maturation Differentially Regulate Seed Longevity and Seedling Greening

种子成熟过程中表达的热应激因子差异调节种子寿命和幼苗绿化

阅读:4
作者:Concepción Almoguera, Pilar Prieto-Dapena, Raúl Carranco, José Luis Ruiz, Juan Jordano

Abstract

Heat Stress Factor A9 (A9), a seed-specific transcription factor contributing to seed longevity, also enhances phytochrome-dependent seedling greening. The RNA-seq analyses of imbibed-seed transcripts here reported indicated potential additional effects of A9 on cryptochrome-mediated blue-light responses. These analyses also suggested that in contrast to the A9 effects on longevity, which require coactivation by additional factors as A4a, A9 alone might suffice for the enhancement of photomorphogenesis at the seedling stage. We found that upon its seed-specific overexpression, A9 indeed enhanced the expected blue-light responses. Comparative loss-of-function analyses of longevity and greening, performed by similar expression of dominant-negative and inactive forms of A9, not only confirmed the additional greening effects of A9, but also were consistent with A9 not requiring A4a (or additional factors) for the greening effects. Our results strongly indicate that A9 would differentially regulate seed longevity and photomorphogenesis at the seedling stage, A9 alone sufficing for both the phytochrome- and cryptochrome-dependent greening enhancement effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。