Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes

将遗传学与不同疾病状态下的单细胞多组学测量相结合,可确定 2 型糖尿病中 β 细胞功能障碍的机制

阅读:6
作者:Gaowei Wang #, Joshua Chiou #, Chun Zeng #, Michael Miller, Ileana Matta, Jee Yun Han, Nikita Kadakia, Mei-Lin Okino, Elisha Beebe, Medhavi Mallick, Joan Camunas-Soler, Theodore Dos Santos, Xiao-Qing Dai, Cara Ellis, Yan Hang, Seung K Kim, Patrick E MacDonald, Fouad R Kandeel, Sebastian Preissl, Kyl

Abstract

Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。