Role of CD73 in Renal Sympathetic Neurotransmission in the Mouse Kidney

CD73 在小鼠肾脏交感神经传递中的作用

阅读:5
作者:Edwin K Jackson, Dongmei Cheng, Zaichuan Mi, Jonathan D Verrier, Keri Janesko-Feldman, Patrick M Kochanek

Abstract

Adenosine formed during renal sympathetic nerve stimulation (RSNS) enhances, by activating A1 receptors, the postjunctional effects of released norepinephrine and participates in renal sympathetic neurotransmission. Because in many cell types CD73 (ecto-5'-nucleotidase) is important for the conversion of 5'-AMP to adenosine, we investigated whether CD73 is necessary for normal renal sympathetic neurotransmission. In isolated kidneys from CD73 wild-type mice (CD73 +/+; n=17) perfused at a constant rate with Tyrode's solution, RSNS increased perfusion pressure by 17±4, 36±8 and 44±10 mm Hg at 3, 5 and 7 Hz, respectively. Similar responses were elicited from kidneys isolated from CD73 knockout mice (CD73 -/-; n=13; 28±11, 43±10 and 44±10 mm Hg at 3, 5 and 7 Hz, respectively); and a high concentration (100 μmol/L) of α,β-methyleneadenosine 5'-diphosphate (CD73 inhibitor) did not alter responses to RSNS in C57BL/6 mouse kidneys (n=5; 21±5, 36±8 and 43±9 at 3, 5 and 7 Hz, respectively). Measurements of renal venous adenosine and inosine (adenosine metabolite) by liquid chromatography-tandem mass spectrometry demonstrated that the metabolism of exogenous 5'-AMP to adenosine and inosine was similar in CD73 -/- versus CD73 +/+ kidneys. A1 receptor mRNA expression was increased in CD73 -/- kidneys, and 2-chloro-N6-cyclopentyladenosine (0.1 μmol/L; A1 receptor agonist) enhanced renovascular responses to norepinephrine more in CD73 -/- versus CD73 +/+ kidneys. We conclude that CD73 is not essential for renal sympathetic neurotransmission because in the absence of renal CD73 other enzymes metabolize 5'-AMP to adenosine and because of compensatory upregulation of postjunctional coincident signaling between norepinephrine and adenosine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。