Metabolomics-based phenotypic screens for evaluation of drug synergy via direct-infusion mass spectrometry

基于代谢组学的表型筛选,通过直接输注质谱法评估药物协同作用

阅读:4
作者:Xiyuan Lu, G Lavender Hackman, Achinto Saha, Atul Singh Rathore, Meghan Collins, Chelsea Friedman, S Stephen Yi, Fumio Matsuda, John DiGiovanni, Alessia Lodi, Stefano Tiziani

Abstract

Drugs used in combination can synergize to increase efficacy, decrease toxicity, and prevent drug resistance. While conventional high-throughput screens that rely on univariate data are incredibly valuable to identify promising drug candidates, phenotypic screening methodologies could be beneficial to provide deep insight into the molecular response of drug combination with a likelihood of improved clinical outcomes. We developed a high-content metabolomics drug screening platform using stable isotope-tracer direct-infusion mass spectrometry that informs an algorithm to determine synergy from multivariate phenomics data. Using a cancer drug library, we validated the drug screening, integrating isotope-enriched metabolomics data and computational data mining, on a panel of prostate cell lines and verified the synergy between CB-839 and docetaxel both in vitro (three-dimensional model) and in vivo. The proposed unbiased metabolomics screening platform can be used to rapidly generate phenotype-informed datasets and quantify synergy for combinatorial drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。