Using matrix assisted laser desorption ionisation mass spectrometry combined with machine learning for vaccine authenticity screening

使用基质辅助激光解吸电离质谱法结合机器学习进行疫苗真伪筛查

阅读:4
作者:Rebecca Clarke, Tehmina Bharucha, Benediktus Yohan Arman, Bevin Gangadharan, Laura Gomez Fernandez, Sara Mosca, Qianqi Lin, Kerlijn Van Assche, Robert Stokes, Susanna Dunachie, Michael Deats, Hamid A Merchant, Céline Caillet, John Walsby-Tickle, Fay Probert, Pavel Matousek, Paul N Newton, Nicole Zit

Abstract

The global population is increasingly reliant on vaccines to maintain population health with billions of doses used annually in immunisation programmes. Substandard and falsified vaccines are becoming more prevalent, caused by both the degradation of authentic vaccines but also deliberately falsified vaccine products. These threaten public health, and the increase in vaccine falsification is now a major concern. There is currently no coordinated global infrastructure or screening methods to monitor vaccine supply chains. In this study, we developed and validated a matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) workflow that used open-source machine learning and statistical analysis to distinguish authentic and falsified vaccines. We validated the method on two different MALDI-MS instruments used worldwide for clinical applications. Our results show that multivariate data modelling and diagnostic mass spectra can be used to distinguish authentic and falsified vaccines providing proof-of-concept that MALDI-MS can be used as a screening tool to monitor vaccine supply chains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。