SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication

SAMHD1 通过限制 DNA 复制来限制巨噬细胞中的单纯疱疹病毒 1

阅读:10
作者:Eui Tae Kim, Tommy E White, Alberto Brandariz-Núñez, Felipe Diaz-Griffero, Matthew D Weitzman

Abstract

Macrophages play important roles in host immune defense against virus infection. During infection by herpes simplex virus 1 (HSV-1), macrophages acquire enhanced antiviral potential. Restriction of HSV-1 replication and progeny production is important to prevent viral spread, but the cellular mechanisms that inhibit the DNA virus in macrophages are unknown. SAMHD1 was recently identified as a retrovirus restriction factor highly expressed in macrophages. The SAMHD1 protein is expressed in both undifferentiated monocytes and differentiated macrophages, but retroviral restriction is limited to differentiated cells by modulation of SAMHD1 phosphorylation. It is proposed to block reverse transcription of retroviral RNA into DNA by depleting cellular deoxynucleotide triphosphates (dNTPs). Viruses with DNA genomes do not employ reverse transcription during infection, but replication of their viral genomes is also dependent on intracellular dNTP concentrations. Here, we demonstrate that SAMHD1 restricts replication of the HSV-1 DNA genome in differentiated macrophage cell lines. Depleting SAMHD1 in THP-1 cells enhanced HSV-1 replication, while ectopic overexpression of SAMHD1 in U937 cells repressed HSV-1 replication. SAMHD1 did not impact viral gene expression from incoming HSV-1 viral genomes. HSV-1 restriction involved the dNTP triphosphohydrolase activity of SAMHD1 and was partially overcome by addition of exogenous deoxynucleosides. Unlike retroviruses, restriction of HSV-1 was not affected by SAMHD1 phosphorylation status. Our results suggest that SAMHD1 functions broadly to inhibit replication of DNA viruses in nondividing macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。