Conclusion
In summary, our findings suggested that α-NETA has beneficial effects on the management of DN. Specifically, α-NETA effectively ameliorated renal damage and inflammation in a dose-dependent manner in mice with DN. Thus, targeting the chemerin and CMKLR1 axis with α-NETA may be a promising therapeutic strategy for the treatment of DN.
Methods
To induce diabetes, 8-week-old male C57BL/6J mice were given a single intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Diabetic mice were randomly assigned to receive daily doses of 0, 5, or 10 mg/kg α-NETA for 4 weeks.
Results
α-NETA dose-dependently induced body weight and reduced fasting blood glucose levels in STZ-induced diabetic mice. Furthermore, α-NETA significantly reduced the expressions of renal injury markers, including serum creatinine, kidney weight/body weight, urine volume, total proteins, and albumin in the urine, and increased creatinine clearance. Periodic acid-Schiff staining also indicated that α-NETA could effectively ameliorate renal injuries in DN mice. In addition, α-NETA inhibited renal inflammation and the expressions of chemerin and CMKLR1 in mice with DN.
