Unraveling the Complex Molecular Interplay and Vascular Adaptive Changes in Hypertension-Induced Kidney Disease

揭示高血压诱发肾脏疾病的复杂分子相互作用和血管适应性变化

阅读:8
作者:Lyubomir Gaydarski, Iva N Dimitrova, Stancho Stanchev, Alexandar Iliev, Georgi Kotov, Vidin Kirkov, Nikola Stamenov, Tihomir Dikov, Georgi P Georgiev, Boycho Landzhov

Abstract

Angiogenesis, the natural mechanism by which fresh blood vessels develop from preexisting ones, is altered in arterial hypertension (AH), impacting renal function. Studies have shown that hypertension-induced renal damage involves changes in capillary density (CD), indicating alterations in vascularization. We aimed to elucidate the role of the apelin receptor (APLNR), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF) in hypertension-induced renal damage. We used two groups of spontaneously hypertensive rats aged 6 and 12 months, representing different stages of AH, and compared them to age-matched normotensive controls. The kidney tissue samples were prepared through a well-established protocol. All data analysis was conducted with a dedicated software program. APLNR was localized in tubular epithelial cells and the endothelial cells of the glomeruli, with higher expression in older SHRs. The localization of nNOS and VEGF was similar. The expression of APLNR and nNOS increased with AH progression, while VEGF levels decreased. CD was lower in young SHRs compared to controls and decreased significantly in older SHRs in comparison to age-matched controls. Our statistical analysis revealed significant differences in molecule expression between age groups and varying correlations between the expression of the three molecules and CD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。