Cell survival following radiation exposure requires miR-525-3p mediated suppression of ARRB1 and TXN1

辐射暴露后的细胞存活需要 miR-525-3p 介导的 ARRB1 和 TXN1 抑制

阅读:5
作者:Anne Kraemer, Zarko Barjaktarovic, Hakan Sarioglu, Klaudia Winkler, Friederike Eckardt-Schupp, Soile Tapio, Michael J Atkinson, Simone Moertl

Background

microRNAs (miRNAs) are non-coding RNAs that alter the stability and translation efficiency of messenger RNAs. Ionizing radiation (IR) induces rapid and selective changes in miRNA expression. Depletion of the miRNA processing enzymes Dicer or Ago2 reduces the capacity of cells to survive radiation exposure. Elucidation of critical radiation-regulated miRNAs and their target proteins offers a promising approach to identify new targets to increase the therapeutic effectiveness of the radiation treatment of cancer. Principal findings: Expression of miR-525-3p is rapidly up-regulated in response to radiation. Manipulation of miR-525-3p expression in irradiated cells confirmed that this miRNA mediates the radiosensitivity of a variety of non-transformed (RPE, HUVEC) and tumor-derived cell lines (HeLa, U2-Os, EA.hy926) cell lines. Thus, anti-miR-525-3p mediated inhibition of the increase in miR-525-3p elevated radiosensitivity, while overexpression of precursor miR-525-3p conferred radioresistance. Using a proteomic approach we identified 21 radiation-regulated proteins, of which 14 were found to be candidate targets for miR-525-3p-mediated repression. Luciferase reporter assays confirmed that nine of these were indeed direct targets of miR-525-3p repression. Individual analysis of these direct targets by RNAi-mediated knockdown established that ARRB1, TXN1 and HSPA9 are essential miR-525-3p-dependent regulators of radiation sensitivity.

Conclusion

The transient up-regulation of miR-525-3p, and the resultant repression of its direct targets ARRB1, TXN1 and HSPA9, is required for cell survival following irradiation. The conserved function of miR-525-3p across several cell types makes this microRNA pathway a promising target for modifying the efficacy of radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。