Mild mitochondrial uncoupling induces 3T3-L1 adipocyte de-differentiation by a PPARgamma-independent mechanism, whereas TNFalpha-induced de-differentiation is PPARgamma dependent

轻度线粒体解偶联通过 PPARgamma 非依赖性机制诱导 3T3-L1 脂肪细胞去分化,而 TNFalpha 诱导的去分化则依赖 PPARgamma

阅读:5
作者:Silvia Tejerina, Aurélia De Pauw, Sébastien Vankoningsloo, Andrée Houbion, Patricia Renard, Françoise De Longueville, Martine Raes, Thierry Arnould

Abstract

Impairment of mitochondrial activity affects lipid-metabolizing tissues and mild mitochondrial uncoupling has been proposed as a possible strategy to fight obesity and associated diseases. In this report, we characterized the 3T3-L1-adipocyte ;de-differentiation' induced by carbonyl cyanide (p-trifluoromethoxy)-phenylhydrazone (FCCP), a mitochondrial uncoupler. We found a decrease in triglyceride (TG) content in adipocytes incubated with this molecule. We next analyzed the expression of genes encoding adipogenic markers and effectors and compared the differentially expressed genes in adipocytes treated with FCCP or TNFalpha (a cytokine known to induce adipocyte de-differentiation). Furthermore, a significant decrease in the transcriptional activity of PPARgamma and C/EBPalpha transcription factors was found in adipocytes with impaired mitochondrial activity. However, although these modifications were also found in TNFalpha-treated adipocytes, rosiglitazone and 9-cis retinoic acid (PPARgamma and RXR ligands) were unable to prevent triglyceride loss in FCCP-treated cells. Metabolic assays also revealed that TG reduction could be mediated by a downregulation of lipid synthesis rather than an upregulation of fatty acid oxidation. Finally, lipolysis stimulated by the uncoupler also seems to contribute to the TG reduction, a process associated with perilipin A downregulation. These results highlight some new mechanisms that might potentially be involved in adipocyte de-differentiation initiated by a mitochondrial uncoupling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。