Preconditioning contractions prevent the delayed onset of myofibrillar dysfunction after damaging eccentric contractions

预处理收缩可防止损伤性离心收缩后肌原纤维功能障碍的延迟发生

阅读:10
作者:Ryotaro Yamada, Koichi Himori, Daisuke Tatebayashi, Yuki Ashida, Kazumi Ikezaki, Hirohumi Miyata, Keita Kanzaki, Masanobu Wada, Håkan Westerblad, Takashi Yamada

Abstract

Key points: We examined the mechanisms underlying the positive effect of preconditioning contractions (PCs) on the recovery of muscle force after damaging eccentric contractions (ECCs). The mechanisms underlying the immediate force decrease after damaging ECCs differ from those causing depressed force with a few days' delay, where reactive oxygen species (ROS) produced by invading immune cells play an important causative role. PCs counteracted the delayed onset force depression and this could be explained by prevention of immune cell invasion, which resulted in decreased myeloperoxidase-mediated ROS production, hence avoiding cell membrane disruption, calpain activation and degenerative changes in myosin and actin molecules. Preconditioning contractions (PCs) have been shown to result in markedly improved contractile function during the recovery periods after muscle damage from eccentric contractions (ECCs). Here, we examined the mechanisms underlying the beneficial effect of PCs with a special focus on the myofibrillar function. Rat medial gastrocnemius muscles were exposed to 100 repeated damaging ECCs in situ and excised immediately (recovery 0, REC0) or after 4 days (REC4). PCs with 10 repeated non-damaging ECCs were applied 2 days before the damaging ECCs. PCs improved in situ maximal isometric torque at REC4. Skinned muscle fibres were used to directly assess changes in myofibrillar function. PCs prevented the damaging ECC-induced depression in maximum Ca2+ -activated force at REC4. PCs also prevented the following damaging ECC-induced effects at REC4: (i) the reduction in myosin heavy chain and actin content; (ii) calpain activation; (iii) changes in redox homeostasis manifested as increased expression levels of malondialdehyde-protein adducts, NADPH oxidase 2, superoxide dismutase 2 and catalase, and activation of myeloperoxidase (MPO); (iv) infiltration of immune cells and loss of cell membrane integrity. Additionally, at REC0, PCs enhanced the expression levels of heat shock protein (HSP) 70, HSP25, and αB-crystallin in the myofibrils and prevented the increased mRNA levels of granulocyte-macrophage colony-stimulating factor and interleukin-6. In conclusion, PCs prevent the delayed force depression after damaging ECCs by an HSP-dependent inhibition of degenerative changes in myosin and actin molecules caused by myeloperoxidase-induced membrane lysis and subsequent calpain activation, which were triggered by an inflammatory reaction with immune cells invading damaged muscles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。