Xue-Jie-San prevents the early development of colitis-associated intestinal fibrosis by blocking Notch1 and FGL1 signaling pathways

血竭散通过阻断 Notch1 和 FGL1 信号通路阻止结肠炎相关肠纤维化的早期发展

阅读:6
作者:Ying Gao, Li-Juan Lu, Zhao-Zheng Zhang, Xiao Yang, Jun Du, Ke Wen, Hua Huang, Xiao-Peng Wang, Xue-Liang Sun

Aim of the study

Intestinal fibrosis is a debilitating complication of CD. Currently, there is no effective medication available for preventing or reversing CD-related intestinal fibrosis. This study aimed to assess the efficacy and underlying mechanisms of XJS in the treatment of colitis-associated intestinal fibrosis. Materials and

Conclusions

Our findings validated that XJS prevented the early development of CD-related intestinal fibrosis by blocking the Notch1 and FGL1 signaling pathways to activate autophagy and thereby inhibit EMT and EndoMT.

Methods

A rat model of CD-related intestinal fibrosis was induced by 2,4,6-trinitrobenzene sulfonic acid administration and treated with XJS. The pathological changes of intestinal fibrosis were evaluated using Masson staining. Collagen deposition and epithelial-to-mesenchymal transition (EMT) were verified by immunohistochemical staining and Western blot analysis. Endothelial-to-mesenchymal transition (EndoMT) was assessed with immunofluorescence and immunohistochemical staining as well as Western blot analysis. Transmission electron microscopy was utilized to observe autophagosomes. The levels of autophagy-related proteins were detected via immunofluorescence staining and Western blot. Finally, the mTOR/ULK1 signaling pathway regulated by Notch1 or FGL1 was analyzed by Western blot.

Results

The results found that XJS ameliorated intestinal fibrosis through reducing the deposition of collagens such as Collagen 1 and Collagen 3. XJS inhibited the EMT process by increasing E-cadherin levels and decreasing the expressions of N-cadherin, Vimentin and Snail, which played a crucial role in collagen secretion and intestinal fibrosis. In addition, XJS also repressed the EndoMT process as reflected by the upregulation of CD31 and VE-cadherin levels and the downregulation of FSP1 and α-SMA expressions. Autophagy was activated following XJS treatment via suppression of the mTOR/ULK1 signaling pathway. Furthermore, XJS acted as an inhibitor of Notch1 and FGL1 signals, both of which regulated the mTOR signaling. Conclusions: Our findings validated that XJS prevented the early development of CD-related intestinal fibrosis by blocking the Notch1 and FGL1 signaling pathways to activate autophagy and thereby inhibit EMT and EndoMT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。