Per2-Mediated Vascular Dysfunction Is Caused by the Upregulation of the Connective Tissue Growth Factor (CTGF)

Per2 介导的血管功能障碍是由结缔组织生长因子 (CTGF) 上调引起的

阅读:7
作者:Vaishnavi Jadhav, Qianyi Luo, James M Dominguez 2nd, Jude Al-Sabah, Brahim Chaqour, Maria B Grant, Ashay D Bhatwadekar

Abstract

Period 2-mutant mice (Per2m/m), which possess a circadian dysfunction, recapitulate the retinal vascular phenotype similar to diabetic retinopathy (DR). The vascular dysfunction in Per2m/m is associated with an increase in connective tissue growth factor (CTGF/CCN2). At the molecular level, CTGF gene expression is dependent on the canonical Wnt/β-catenin pathway. The nuclear binding of β-catenin to a transcription factor, lymphoid enhancer binding protein (Lef)/ T-cell factor (TCF/LEF), leads to downstream activation of CTGF. For this study, we hypothesized that the silencing of Per2 results in nuclear translocation and subsequent transactivation of the CTGF gene. To test this hypothesis, we performed immunofluorescence labeling for CTGF in retinal sections from wild-type (WT) and Per2m/m mice. Human retinal endothelial cells (HRECs) were transfected with siRNA for Per2, and the protein expression of CTGF and β-catenin was evaluated. The TCF/LEF luciferase reporter (TOPflash) assay was performed to validate the involvement of β-catenin in the activation of CTGF. Per2m/m retinas exhibited an increased CTGF immunostaining in ganglion cell layer and retinal endothelium. Silencing of Per2 using siRNA resulted in an upregulation of CTGF and β-catenin. The TOPflash assay revealed an increase in luminescence for HRECs transfected with Per2 siRNA. Our studies show that loss of Per2 results in an activation of CTGF via nuclear entry of β-catenin. Our study provides novel insight into the understanding of microvascular dysfunction in Per2m/m mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。