Ezetimibe Lowers Risk of Alzheimer's and Related Dementias over Sevenfold, Reducing Aggregation in Model Systems by Inhibiting 14-3-3G::Hexokinase Interaction

依折麦布可降低阿尔茨海默病和相关痴呆症的风险七倍以上,通过抑制 14-3-3G::己糖激酶相互作用减少模型系统中的聚集

阅读:8
作者:Akshatha Ganne, Nirjal Mainali, Meenakshisundaram Balasubramaniam, Ramani Atluri, Sonu Pahal, Joseph Asante, Corey Nagel, Srikanth Vallurupalli, Robert J Shmookler Reis, Srinivas Ayyadevara

Abstract

Numerous factors predispose to progression of cognitive impairment to Alzheimer's disease and related dementias (ADRD), most notably age, APOE(ε4) alleles, traumatic brain injury, heart disease, hypertension, obesity/diabetes, and Down's syndrome. Protein aggregation is diagnostic for neurodegenerative diseases, and may be causal through promotion of chronic neuroinflammation. We isolated aggregates from postmortem hippocampi of ADRD patients, heart-disease patients, and age-matched controls. Aggregates, characterized by high-resolution proteomics (with or without crosslinking), were significantly elevated in heart-disease and ADRD hippocampi. Hexokinase-1 (HK1) and 14-3-3G/γ proteins, previously implicated in neuronal signaling and neurodegeneration, are especially enriched in ADRD and heart-disease aggregates vs. controls (each P<0.008), and their interaction was implied by extensive crosslinking in both disease groups. Screening the hexokinase-1::14-3-3G interface with FDA-approved drug structures predicted strong affinity for ezetimibe, a benign cholesterol-lowering medication. Diverse cultured human-cell and whole-nematode models of ADRD aggregation showed that this drug potently disrupts HK1::14-3-3G adhesion, reduces disease-associated aggregation, and activates autophagy. Mining clinical databases supports drug reduction of ADRD risk, decreasing it to 0.14 overall (P<0.0001; 95% C.I. 0.06-0.34), and <0.12 in high-risk heart-disease subjects (P<0.006). These results suggest that drug disruption of the 14-3-3G::HK1 interface blocks an early "lynchpin" adhesion, prospectively reducing aggregate accrual and progression of ADRD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。