The long non-coding RNA PVT1/miR-145-5p/ITGB8 axis regulates cell proliferation, apoptosis, migration and invasion in non-small cell lung cancer cells

长链非编码RNA PVT1/miR-145-5p/ITGB8轴调控非小细胞肺癌细胞增殖、凋亡、迁移和侵袭

阅读:5
作者:C M Wei, X F Zhao, H B Qiu, Z Ming, K Liu, J Yan

Abstract

Lung cancer is one of the leading causes of death worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer. Long noncoding RNAs (lncRNAs) are closely associated with the development and progression of various cancers, including lung cancer. The purpose of this study was to explore the potential role and molecular mechanism of lncRNA plasmacytoma variant translocation 1 (PVT1) in regulating the proliferation, apoptosis, migration, and invasion of NSCLC cells. The expressions of PVT1, integrin β-8 (ITGB8), and miR-145-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of ITGB8, MEK, p-MEK, ERK, and p-ERK were measured by western blot analysis. Cell proliferation, apoptosis, migration, and invasion were determined by MTT assay, flow cytometry, and transwell assay, respectively. The potential binding sites between miR-145-5p and PVT1 or ITGB8 were predicted by online software and verified by luciferase reporter assay. A xenograft tumor model was established to confirm the effect of PVT1 on NSCLC in vivo. We found out that the expression levels of PVT1 and ITGB8 were upregulated in NSCLC tissues and cells. Knockdown of PVT1 or ITGB8 suppressed cell proliferation, migration, invasion and promoted apoptosis in NSCLC cells, which could be reversed by ITGB8 overexpression in NSCLC cells. Moreover, PVT1 could regulate ITGB8 expression via direct binding to miR-145-5p. Furthermore, PVT1 regulated the MEK/ERK pathway by affecting ITGB8 expression. In addition, knockdown of PVT1 inhibited tumor growth, ITGB8 expression, MEK/ERK signaling pathway, and increased miR-145-5p expression in vivo. In conclusion, the knockdown of PVT1 inhibited proliferation, migration, and invasion but induced apoptosis of NSCLC cells by regulating miR-145-5p/ITGB8 axis and inhibiting MEK/ERK signaling pathway, providing a novel avenue for the treatment of NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。