CANDIDATE GENES FOR LIMITING CHOLESTATIC INTESTINAL INJURY IDENTIFIED BY GENE EXPRESSION PROFILING

通过基因表达谱鉴定限制胆汁淤积性肠损伤的候选基因

阅读:8
作者:Samuel M Alaish, Jennifer Timmons, Alexis Smith, Marguerite S Buzza, Ebony Murphy, Aiping Zhao, Yezhou Sun, Douglas J Turner, Terez Shea-Donahue, Toni M Antalis, Alan Cross, Susan G Dorsey

Abstract

The lack of bile flow from the liver into the intestine can have devastating complications including hepatic failure, sepsis and even death. This pathologic condition known as cholestasis can result from etiologies as diverse as total parenteral nutrition (TPN), hepatitis and pancreatic cancer. The intestinal injury associated with cholestasis has been shown to result in decreased intestinal resistance, increased bacterial translocation and increased endotoxemia. Anecdotal clinical evidence suggests a genetic predisposition to exaggerated injury. Recent animal research on two different strains of inbred mice demonstrating different rates of bacterial translocation with different mortality rates supports this premise. In this study, a microarray analysis of intestinal tissue following common bile duct ligation (CBDL) performed under general anesthesia on these same two strains of inbred mice was done with the goal of identifying the potential molecular mechanistic pathways responsible. Over 500 genes were increased more than 2.0 fold following CBDL. The most promising candidate genes included MUPs, Serpina1a and LCN-2. RT-PCR validated the microarray results for these candidate genes. In an in vitro experiment using differentiated intestinal epithelial cells, inhibition of MUP-1 by siRNA resulted in increased intestinal epithelial cell permeability. Diverse novel mechanisms involving the growth hormone pathway, the acute phase response and the innate immune response are thus potential avenues for limiting cholestatic intestinal injury. Changes in gene expression were at times found to be not only due to the CBDL but also due to the murine strain. Should further studies in cholestatic patients demonstrate inter-individual variability similar to what we have shown in mice, then a "personalized medicine" approach to cholestatic patients may become possible.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。