FGF2 from Marrow Microenvironment Promotes Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia

骨髓微环境中的 FGF2 促进急性髓系白血病对 FLT3 抑制剂的耐药性

阅读:8
作者:Elie Traer, Jacqueline Martinez, Nathalie Javidi-Sharifi, Anupriya Agarwal, Jennifer Dunlap, Isabel English, Tibor Kovacsovics, Jeffrey W Tyner, Melissa Wong, Brian J Druker

Abstract

Potent FLT3 inhibitors, such as quizartinib (AC220), have shown promise in treating acute myeloid leukemia (AML) containing FLT3 internal tandem duplication (ITD) mutations. However, responses are not durable and resistance develops within months. In this study, we outline a two-step model of resistance whereby extrinsic microenvironmental proteins FLT3 ligand (FL) and fibroblast growth factor 2 (FGF2) protect FLT3-ITD+ MOLM14 cells from AC220, providing time for subsequent accumulation of ligand-independent resistance mechanisms. FL directly attenuated AC220 inhibition of FLT3, consistent with previous reports. Conversely, FGF2 promoted resistance through activation of FGFR1 and downstream MAPK effectors; these resistant cells responded synergistically to combinatorial inhibition of FGFR1 and FLT3. Removing FL or FGF2 from ligand-dependent resistant cultures transiently restored sensitivity to AC220, but accelerated acquisition of secondary resistance via reactivation of FLT3 and RAS/MAPK signaling. FLT3-ITD AML patients treated with AC220 developed increased FGF2 expression in marrow stromal cells, which peaked prior to overt clinical relapse and detection of resistance mutations. Overall, these results support a strategy of early combination therapy to target early survival signals from the bone marrow microenvironment, in particular FGF2, to improve the depth of response in FLT3-ITD AML. Cancer Res; 76(22); 6471-82. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。