Antiprion compounds that reduce PrP(Sc) levels in dividing and stationary-phase cells

抗朊病毒化合物可降低分裂期和静止期细胞中的 PrP(Sc) 水平

阅读:7
作者:B Michael Silber, Joel R Gever, Zhe Li, Alejandra Gallardo-Godoy, Adam R Renslo, Kartika Widjaja, John J Irwin, Satish Rao, Matthew P Jacobson, Sina Ghaemmaghami, Stanley B Prusiner

Abstract

During prion diseases, a normally benign, host protein, denoted PrP(C), undergoes alternative folding into the aberrant isoform, PrP(Sc). We used ELISA to identify and confirm hits in order to develop leads that reduce PrP(Sc) in prion-infected dividing and stationary-phase mouse neuroblastoma (ScN2a-cl3) cells. We tested 52,830 diverse small molecules in dividing cells and 49,430 in stationary-phase cells. This led to 3100 HTS and 970 single point confirmed (SPC) hits in dividing cells, 331 HTS and 55 confirmed SPC hits in stationary-phase cells as well as 36 confirmed SPC hits active in both. Fourteen chemical leads were identified from confirmed SPC hits in dividing cells and three in stationary-phase cells. From more than 682 compounds tested in concentration-effect relationships in dividing cells to determine potency (EC50), 102 had EC50 values between 1 and 10 μM and 50 had EC50 values of <1 μM; none affected cell viability. We observed an excellent correlation between EC50 values determined by ELISA and Western immunoblotting for 28 representative compounds in dividing cells (R(2)=0.75; p <0.0001). Of the 55 confirmed SPC hits in stationary-phase cells, 23 were piperazine, indole, or urea leads. The EC50 values of one indole in stationary-phase and dividing ScN2a-cl3 cells were 7.5 and 1.6 μM, respectively. Unexpectedly, the number of hits in stationary-phase cells was ~10% of that in dividing cells. The explanation for this difference remains to be determined.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。