Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities

脑膜瘤 DNA 甲基化组可识别生物驱动因素和治疗弱点

阅读:8
作者:Abrar Choudhury, Stephen T Magill #, Charlotte D Eaton #, Briana C Prager, William C Chen, Martha A Cady, Kyounghee Seo, Calixto-Hope G Lucas, Tim J Casey-Clyde, Harish N Vasudevan, S John Liu, Javier E Villanueva-Meyer, Tai-Chung Lam, Jenny Kan-Suen Pu, Lai-Fung Li, Gilberto Ka-Kit Leung, Danielle

Abstract

Meningiomas are the most common primary intracranial tumors. There are no effective medical therapies for meningioma patients, and new treatments have been encumbered by limited understanding of meningioma biology. Here, we use DNA methylation profiling on 565 meningiomas integrated with genetic, transcriptomic, biochemical, proteomic and single-cell approaches to show meningiomas are composed of three DNA methylation groups with distinct clinical outcomes, biological drivers and therapeutic vulnerabilities. Merlin-intact meningiomas (34%) have the best outcomes and are distinguished by NF2/Merlin regulation of susceptibility to cytotoxic therapy. Immune-enriched meningiomas (38%) have intermediate outcomes and are distinguished by immune infiltration, HLA expression and lymphatic vessels. Hypermitotic meningiomas (28%) have the worst outcomes and are distinguished by convergent genetic and epigenetic mechanisms driving the cell cycle and resistance to cytotoxic therapy. To translate these findings into clinical practice, we show cytostatic cell cycle inhibitors attenuate meningioma growth in cell culture, organoids, xenografts and patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。