MDM2-mediated ubiquitination of LKB1 contributes to the development of diabetic cataract

MDM2 介导的 LKB1 泛素化促进糖尿病性白内障的发展

阅读:5
作者:Xiao Li, Xiaowei Sun, Li Li, Yao Luo, Yingjie Chi, Guangying Zheng

Abstract

Diabetic cataract (DC) is a common complication of diabetes mellitus. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a crucial event in the development of DC. Murine double minute 2 (MDM2) is an E3 ubiquitin ligase that promotes EMT by regulating diverse targets. However, little is known about how MDM2 is involved in the pathogenesis of DC. We found the mRNA and protein levels of MDM2 were up-regulated in the lens of DC patients and rats. Thus, high glucose (HG)-induced human lens epithelial cells (HLECs) were constructed for further investigation. The results showed that the level of MDM2 was increased in HG-cultured HLECs, and the MDM2 knockdown alleviated HG-induced abnormal migration, EMT, and oxidative stress damage. Moreover, co-immunoprecipitation and ubiquitination assays demonstrated that MDM2 down-regulated LKB1 expression by ubiquitination degradation. LKB1 was found to be lower expressed in human and rat DC lenses, and HG-stimulated HLECs. Also, LKB1 overexpression mitigated HG-induced dysfunction of HLECs. Finally, our data showed that the changes related to EMT and oxidative stress induced by MDM2 knockdown were restored by down-regulation of LKB1. Together, MDM2 may involve in the pathogenesis of DC through down-regulating LKB1. MDM2 might be an effective therapeutical target of DC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。