Conclusion
The present report demonstrates that Sorafenib exerts its toxic effect through the induction of autophagy in an Akt-dependent fashion without the implication of Mitogen Activated Protein Kinase. Therefore, our data discard the use of inhibitors of the RAF-MEK-ERK1/2 signalling pathway in RCC and support the use of pro-autophagic compounds, opening new therapeutic opportunities for Renal Cell Carcinoma.
Methods
An experimental model of Renal Cell Carcinoma-derived cell lines (ACHN and 786-O cells) was evaluated in terms of viability by MTT assay, induction of apoptosis by caspase 3/7 activity, autophagy induction by LC3 lipidation, and p62 degradation and kinase activity using phospho-targeted antibodies. Knock down of ATG5 and ERK5 was performed using lentiviral vector coding specific shRNA.
Results
Our data discard Extracellular Regulated Kinase 1/2 and 5 as well as p38 Mitogen Activated Protein Kinase pathways as mediators of Sorafenib toxic effect but instead indicate that the inhibitory effect is exerted through the PI3K/Akt signalling pathway. Furthermore, we demonstrate that inhibition of Akt mediates cell death associated to Sorafenib without caspase activation, and this is consistent with the induction of autophagy, as indicated by the use of pharmacological and genetic approaches.
