Corrosion Inhibition of Carbon Steel in a Sour (H2S) Environment by an Acryloyl-Based Polymer

丙烯酰基聚合物对酸性(H2S)环境中碳钢的腐蚀抑制

阅读:4
作者:Muhammad Imran Ulhaq, Qasim Saleem, Hassan Ajwad, Rashed M Aleisa, Nayef M Alanazi, Matteo Leoni, Ibrahim Zahrani, Taras Makogon

Abstract

Corrosion poses safety and operational challenges in the oil and gas field, particularly in a sour environment. Corrosion inhibitors (CIs) are thus employed to protect the integrity of industrial assets. However, CIs have the potential to dramatically impair the effectiveness of other co-additives, such as kinetic hydrate inhibitors (KHIs). Here, we propose an acryloyl-based copolymer, previously used as a KHI, as an effective CI. The copolymer formulation provided a corrosion inhibition efficiency of up to 90% in a gas production environment, implying that it can reduce or even eliminate the need for an additional dedicated CI in the system. It also demonstrated a corrosion inhibition efficiency of up to 60% under field-simulated conditions for a wet sour crude processing environment. Molecular modeling suggests that the enhanced corrosion protection is imparted by the favorable interaction of the heteroatoms of the copolymer with the steel surface, potentially displacing adhered water molecules. All in all, we show that an acryloyl-based copolymer with dual functionalities can potentially overcome issues caused by incompatibilities in a sour environment, resulting in significant cost savings and operational ease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。