Evaluation of Biocompatibility of PLA/PHB/TPS Polymer Scaffolds with Different Additives of ATBC and OLA Plasticizers

评估 PLA/PHB/TPS 聚合物支架与不同 ATBC 和 OLA 增塑剂添加剂的生物相容性

阅读:4
作者:Marianna Trebuňová, Patrícia Petroušková, Alena Findrik Balogová, Gabriela Ižaríková, Peter Horňak, Darina Bačenková, Jana Demeterová, Jozef Živčák

Abstract

One of the blends that is usable for 3D printing while not being toxic to cell cultures is the lactic acid (PLA)/polyhydroxybutyrate (PHB)/thermoplastic starch (TPS) blend. The addition of plasticizers can change the rate of biodegradation and the biological behavior of the material. In order to evaluate the potential of the PLA/PHB/TPS material in combination with additives (plasticizers: acetyl tributyl citrate (ATBC) and oligomeric lactic acid (OLA)), for use in the field of biomedical tissue engineering, we performed a comprehensive in vitro characterization of selected mixture materials. Three types of materials were tested: I: PLA/PHB/TPS + 25% OLA, II: PLA/PHB/TPS + 30% ATBC, and III: PLA/PHB/TPS + 30% OLA. The assessment of the biocompatibility of the materials included cytotoxicity tests, such as monitoring the viability, proliferation and morphology of cells and their deposition on the surface of the materials. The cell line 7F2 osteoblasts (Mus musculus) was used in the experiments. Based on the test results, the significant influence of plasticizers on the material was confirmed, with their specific proportions in the mixtures. PLA/PHB/TPS + 25% OLA was evaluated as the optimal material for biocompatibility with 7F2 osteoblasts. The tested biomaterials have the potential for further investigation with a possible change in the proportion of plasticizers, which can have a fundamental impact on their biological properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。