Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury

连翘苷 B 通过激活脊髓损伤后的 Nrf2 抑制 NF-κB 和 p38-MAPK 信号通路,减轻神经炎症和神经元凋亡

阅读:8
作者:Mingjie Xia, Yanan Zhang, Honghui Wu, Qinyang Zhang, Qiangxian Liu, Guangshen Li, Tianyu Zhao, Xuepeng Liu, Shengnai Zheng, Zhanyang Qian, Haijun Li

Background

Spinal cord injury (SCI) is a ruinous neurological pathology that

Conclusion

FTS•B effectively attenuates neuro-inflammation and secondary neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 after SCI. This study demonstrates FTS•B to be a potential therapeutic for SCI.

Methods

Neuro-inflammation was assessed by western blotting (WB), immunofluorescence (IF) staining, and enzyme-linked immunosorbent assay (ELISA) both in vitro and in vivo. Secondary neuronal apoptosis was simulated in a microglia-neuron co-culture model with the degree of apoptosis measured by WB, IF, and TUNEL staining. In vivo, FTS•B (10 mg/kg, 40 mg/kg) were intraperitoneally injected into SCI mice. Morphological changes following SCI were evaluated by Nissl, Hematoxylin-eosin, and Luxol Fast Blue staining. Basso Mouse Scale scores were used to evaluate locomotor function recovery.

Results

FTS•B markedly decreased the levels of iNOS, COX-2 and signature mediators of inflammation. Phosphorylated p38 and nuclear factor-kappa B (NF-κB) were markedly decreased by FTS•B. Additionally, FTS•B-induced inhibition of NF-κB and p38-MAPK signaling pathways was reversed by Nrf2 downregulation. Administration of FTS•B also significantly reduced apoptosis-related protein levels indicating that FTS•B ameliorated secondary neuronal apoptosis. FTS•B administration inhibited glial scar formation, decreased neuronal death, tissue deficiency, alleviated demyelination, and promoted locomotor recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。