UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes

UDP-半乳糖和乙酰辅酶 A 转运蛋白作为疟原虫多药耐药基因

阅读:4
作者:Michelle Yi-Xiu Lim, Gregory LaMonte, Marcus C S Lee, Christin Reimer, Bee Huat Tan, Victoria Corey, Bianca F Tjahjadi, Adeline Chua, Marie Nachon, René Wintjens, Peter Gedeck, Benoit Malleret, Laurent Renia, Ghislain M C Bonamy, Paul Chi-Lui Ho, Bryan K S Yeung, Eric D Chow, Liting Lim, David A Fid

Abstract

A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。