Fibrin-Polycaprolactone Scaffolds for the Differentiation of Human Neural Progenitor Cells into Dopaminergic Neurons

纤维蛋白-聚己内酯支架用于人类神经祖细胞向多巴胺能神经元的分化

阅读:6
作者:Salma P Ramirez, Ivana Hernandez, Zayra N Dorado, Carla D Loyola, David A Roberson, Binata Joddar

Abstract

Parkinson's disease (PD), a progressive central nervous system disorder marked by involuntary movements, poses a significant challenge in neurodegenerative research due to the gradual degeneration of dopaminergic (DA) neurons. Early diagnosis and understanding of PD's pathogenesis could slow disease progression and improve patient management. In vitro modeling with DA neurons derived from human-induced pluripotent stem cell-derived neural progenitor cells (NPCs) offers a promising approach. These neurons can be cultured on electrospun (ES) nanofibrous polycaprolactone (PCL) scaffolds, but PCL's hydrophobic nature limits cell adhesion. We investigated the ability of ES PCL scaffolds coated with hydrophilic extracellular matrix-based biomaterials, including cell basement membrane proteins, Matrigel, and Fibrin, to enhance NPC differentiation into DA neurons. We hypothesized that fibrin-coated scaffolds would maximize differentiation based on fibrin's known benefits in neuronal tissue engineering. The scaffolds both coated and uncoated were characterized using scanning electron microscopy (SEM), transmission electron microscopy, Fourier transform infrared spectroscopy-attenuated total reflectance, and dynamic mechanical analysis to assess their properties. NPCs were seeded on the coated scaffolds, differentiated, and matured into DA neurons. Immunocytochemistry targeting tyrosine hydroxylase (TH) and SEM confirmed DA neuronal differentiation and morphological changes. Electrophysiology via microelectrode array recorded their neuronal firing. Results showed enhanced neurite extension, increased TH expression, and active electrical activity in cells on fibrin-coated scaffolds. Diluted fibrin coatings particularly promoted more pronounced neuronal differentiation and maturation. This study introduces a novel tissue-on-a-chip platform for neurodegenerative disease research using DA neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。