Graphitic Carbon Nitride Causes Widespread Global Molecular Changes in Epithelial and Fibroblast Cells

石墨氮化碳引起上皮细胞和成纤维细胞发生广泛的整体分子变化

阅读:8
作者:Chatterjee Amit, Gajanan Sathe, Abinaya Shunmugam, Prasanna Kumar Athyala, Vivek Ghose, Srujana Chitipothu, Narayanan Janakiraman, Ramaprabhu Sundara, Sailaja V Elchuri

Abstract

For scaffold and imaging applications, nanomaterials such as graphene and its derivatives have been widely used. Graphitic carbon nitride (g-C3N4) is among one such derivative of graphenes, which draws strong consideration due to its physicochemical properties and photocatalytic activity. To use g-C3N4 for biological applications, such as molecular imaging or drug delivery, it must interact with the epithelium, cross the epithelial barrier, and then come in contact with the extracellular matrix of the fibroblast cells. Thus, it becomes essential to understand its molecular mechanism of action. Hence, in this study, to understand the molecular reprogramming associated with g-C3N4, global gene expression using DNA microarrays and proteomics using tandem mass tag (TMT) labeling and mass spectrometry were performed in epithelial and fibroblast cells, respectively. Our results showed that g-C3N4 can cross the epithelial barrier by regulating the adherens junction proteins. Further, using g-C3N4-PDMS scaffolds as a mimic of the extracellular matrix for fibroblast cells, the common signaling pathways were identified between the epithelium and fibroblast cells. These pathways include Wnt signaling, integrin signaling, TGF-β signaling, cadherin signaling, oxidative stress response, ubiquitin proteasome pathway, and EGF receptor signaling pathways. These altered signature pathways identified could play a prominent role in g-C3N4-mediated cellular interactions in both epithelial and fibroblast cells. Additionally, β catenin, EGFR, and MAP2K2 protein-protein interaction networks could play a prominent role in fibroblast cell proliferation. The findings could further our knowledge on g-C3N4-mediated alterations in cellular molecular signatures, enabling the potential use of these materials for biological applications such as molecular imaging and drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。