Linear separability, irrelevant variability, and categorization difficulty

线性可分离性、无关变异性和分类难度

阅读:7
作者:Luke A Rosedahl, F Gregory Ashby

Abstract

In rule-based (RB) category-learning tasks, the optimal strategy is a simple explicit rule, whereas in information-integration (II) tasks, the optimal strategy is impossible to describe verbally. This study investigates the effects of two different category properties on learning difficulty in category learning tasks-namely, linear separability and variability on stimulus dimensions that are irrelevant to the categorization decision. Previous research had reported that linearly separable II categories are easier to learn than nonlinearly separable categories, but Experiment 1, which compared performance on linearly and nonlinearly separable categories that were equated as closely as possible on all other factors that might affect difficulty, found that linear separability had no effect on learning. Experiments 1 and 2 together also established a novel dissociation between RB and II category learning: increasing variability on irrelevant stimulus dimensions impaired II learning but not RB learning. These results are all predicted by the best available measures of difficulty in RB and II tasks. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。