Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy

基于ROS-铁死亡-糖酵解调控的智能仿生金属有机框架用于增强肿瘤化学免疫治疗

阅读:7
作者:Jie Yang, Siyu Ma, Rui Xu, Yawen Wei, Jun Zhang, Tiantian Zuo, Zhihua Wang, Huizi Deng, Ning Yang, Qi Shen

Abstract

Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by "ROS-ferroptosis-glycolysis regulation" strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。