rRNA-Derived Small RNA rsRNA-28S Regulates the Chemoresistance of Prostate Cancer Cells by Targeting PTGIS

rRNA 衍生的小 RNA rsRNA-28S 通过靶向 PTGIS 调节前列腺癌细胞的化学耐药性

阅读:7
作者:Deqian Qiao, Yiling Liu, Yunlong Lei, Chundong Zhang, Youquan Bu, Yishu Tang, Ying Zhang

Background

rRNA-derived small RNAs (rsRNAs) represent a novel class of small non-coding RNAs (sncRNAs), produced by the specific cleavage of rRNAs; however, their roles in tumor development are unclear. In the present study, we explored the effect of a kind of rsRNA-28S, which originates from 28S rRNA, on the chemoresistance of prostate cancer cells and the mechanisms underlying its effect.

Conclusions

Our findings indicate that rsRNA-28S attenuates prostate cancer cell chemoresistance by downregulating its target gene PTGIS. This study not only greatly contributes to systematic identification and functional elucidation of chemoresistance relevant rsRNAs, but also promotes rsRNA-included combinatorial therapeutic regimens for cancer.

Methods

Quantitative reverse transcription PCR (RT-PCR) was performed to quantify rsRNA-28S levels in serum samples taken from prostate cancer patients. DU-145R cells, which are resistant to both paclitaxel and docetaxel, were generated from parental DU-145 cells. Northern blot was conducted to detect cellular rsRNA-28S levels following drug treatments. To verify the effect of rsRNAs-28S on chemoresistance, antisense oligonucleotides were utilized to block rsRNA-28S functions, and a series of assays were further performed, such as cell viability, cell proliferation, colony formation and tumor sphere formation. The target gene of rsRNA-28S was explored using dual-luciferase reporter gene assay.

Results

The rsRNA-28S level was reduced in the serum samples of patients who received chemotherapy compared to that of patients who did not. Furthermore, the rsRNA-28S level was remarkably declined in DU-145R cells, and drug treatments decreased the levels of rsRNA-28S in DU-145 and DU-145R cells. Moreover, rsRNA-28S inhibition enhanced the chemoresistance of prostate cancer cells as well as their cancer stem cell characteristics. Mechanistically, the prostaglandin I2 synthase (PTGIS) gene transcript was verified as a target of rsRNA-28S, as rsRNA-28S inhibited the translation of PTGIS mRNA by directly binding the 3' untranslated region of PTGIS mRNA. rsRNA-28S inhibition was also found to increase PTGIS abundance, and PTGIS overexpression significantly enhanced prostate cancer cell chemoresistance. Conclusions: Our findings indicate that rsRNA-28S attenuates prostate cancer cell chemoresistance by downregulating its target gene PTGIS. This study not only greatly contributes to systematic identification and functional elucidation of chemoresistance relevant rsRNAs, but also promotes rsRNA-included combinatorial therapeutic regimens for cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。