Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures

添加外源性 NAD+ 可通过减少耳蜗器官型培养物中的 caspase-3 介导的细胞凋亡来防止甲氟喹诱导的神经轴突和毛细胞变性

阅读:9
作者:Dalian Ding, Weidong Qi, Dongzhen Yu, Haiyan Jiang, Chul Han, Mi-Jung Kim, Kana Katsuno, Yun Hua Hsieh, Takuya Miyakawa, Richard Salvi, Masaru Tanokura, Shinichi Someya

Background

Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. Principal findings: In this study, we show that the coenzyme NAD(+), known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD(+) protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD(+) reduced the levels of these oxidative stress and apoptosis markers. Conclusions/significance: Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD(+) suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.

Significance

Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD(+) suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。