Apolipoprotein E Polymorphism Impacts White Matter Injury Through Microglial Phagocytosis After Experimental Subarachnoid Hemorrhage

载脂蛋白 E 多态性通过实验性蛛网膜下腔出血后的小胶质细胞吞噬作用影响白质损伤

阅读:10
作者:Chaojie Li, Peng Lu, Lihan Zhang, Yijing He, Lifang Zhang, Lei Yang, Fan Zhang, Xi Kong, Qianke Tao, Jian Zhou, Jinpeng Wu, Tangming Peng, Bingqing Xie, Yong Jiang, Jianhua Peng

Abstract

Apolipoprotein E (apoE, protein; APOE, gene), divided into three alleles of E2, E3 and E4 in humans, is associated with the progression of white matter lesion load. However, mechanism evidence has not been reported regarding the APOE genotype in early white matter injury (WMI) under subarachnoid hemorrhage (SAH) conditions. In the present study, we investigated the effects of APOE gene polymorphisms, by constructing microglial APOE3 and APOE4-specific overexpression, on WMI and underlying mechanisms of microglia phagocytosis in a mice model of SAH. A total of 167 male C57BL/6J mice (weight 22-26 g) were used. SAH and bleeding environment were induced by endovascular perforation in vivo and oxyHb in vitro, respectively. Multi-technology approaches, including immunohistochemistry, high throughput sequencing, gene editing for adeno-associated viruses, and several molecular biotechnologies were used to validate the effects of APOE polymorphisms on microglial phagocytosis and WMI after SAH. Our results revealed that APOE4 significantly aggravated the WMI and decreased neurobehavioral function by impairing microglial phagocytosis after SAH. Indicators negatively associated with microglial phagocytosis increased like CD16, CD86 and the ratio of CD16/CD206, while the indicators positively associated with microglial phagocytosis decreased like Arg-1 and CD206. The increased ROS and aggravating mitochondrial damage demonstrated that the damaging effects of APOE4 in SAH may be associated with microglial oxidative stress-dependent mitochondrial damage. Inhibiting mitochondrial oxidative stress by Mitoquinone (mitoQ) can enhance the phagocytic function of microglia. In conclusion, anti-oxidative stress and phagocytosis protection may serve as promising treatments in the management of SAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。