Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors

边缘叶脑炎中癫痫相关 LGI1 的自身抗体可中和 LGI1-ADAM22 相互作用并减少突触 AMPA 受体

阅读:5
作者:Toshika Ohkawa, Yuko Fukata, Miwako Yamasaki, Taisuke Miyazaki, Norihiko Yokoi, Hiroshi Takashima, Masahiko Watanabe, Osamu Watanabe, Masaki Fukata

Abstract

More than 30 mutations in LGI1, a secreted neuronal protein, have been reported with autosomal dominant lateral temporal lobe epilepsy (ADLTE). Although LGI1 haploinsufficiency is thought to cause ADLTE, the underlying molecular mechanism that results in abnormal brain excitability remains mysterious. Here, we focused on a mode of action of LGI1 autoantibodies associated with limbic encephalitis (LE), which is one of acquired epileptic disorders characterized by subacute onset of amnesia and seizures. We comprehensively screened human sera from patients with immune-mediated neurological disorders for LGI1 autoantibodies, which also uncovered novel autoantibodies against six cell surface antigens including DCC, DPP10, and ADAM23. Our developed ELISA arrays revealed a specific role for LGI1 antibodies in LE and concomitant involvement of multiple antibodies, including LGI1 antibodies in neuromyotonia, a peripheral nerve disorder. LGI1 antibodies associated with LE specifically inhibited the ligand-receptor interaction between LGI1 and ADAM22/23 by targeting the EPTP repeat domain of LGI1 and reversibly reduced synaptic AMPA receptor clusters in rat hippocampal neurons. Furthermore, we found that disruption of LGI1-ADAM22 interaction by soluble extracellular domain of ADAM22 was sufficient to reduce synaptic AMPA receptors in rat hippocampal neurons and that levels of AMPA receptor were greatly reduced in the hippocampal dentate gyrus in the epileptic LGI1 knock-out mouse. Therefore, either genetic or acquired loss of the LGI1-ADAM22 interaction reduces the AMPA receptor function, causing epileptic disorders. These results suggest that by finely regulating the synaptic AMPA receptors, the LGI1-ADAM22 interaction maintains physiological brain excitability throughout life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。