Comparison between optical coherence tomography angiography and immunolabeling for evaluation of laser-induced choroidal neovascularization

光学相干断层扫描血管造影与免疫标记对激光诱发脉络膜新生血管的评价比较

阅读:8
作者:Kazuki Nakagawa, Haruhiko Yamada, Hidetsugu Mori, Keiko Toyama, Kanji Takahashi

Abstract

This study aimed to investigate the differences between images obtained by optical coherence tomography angiography (OCTA) with those from immunohistochemical labeling of laser-induced choroidal neovascularization (CNV) in a mouse model. CNV was induced by laser photocoagulation (GYC-2000, NIDEK; wavelength 532 nm) in the left eyes of 10 female C57BL/6J mice aged 6 weeks. The laser parameters included a 100-μm spot, 100-ms pulse duration and 200-mW incident power to rupture Bruch's membrane. OCT and OCTA CNV images were obtained using the RS-3000 Advance (NIDEK) 5 days post-laser photocoagulation. After OCTA imaging, the isolated choroid/retinal pigment epithelium complexes were fluorescently labeled with CD31 (an endothelial cell marker), platelet-derived growth factor receptor β (PDGFRβ, a pericyte-like scaffold marker), α-smooth muscle actin (α-SMA) and collagen I. Area measurements of the lesions obtained by enface OCTA were compared with immunolabeled CD31+ CNV lesions in choroid flat-mounts. We also examined structural correlations between the PDGFRβ+ pericyte-like scaffold and OCTA images. Laser-induced CNV was clearly detected by enface OCTA, appearing as a hyperflow lesion surrounded by a dark halo. Area measurements of the CNV lesion by immunolabeling were significantly larger than those obtained by enface OCTA (p = 0.006). The CNV lesion beneath the periphery of the pericyte-like scaffold was not clearly visible by enface OCTA due to the dark halo; however, the lesion was detectable as blood flow by cross-sectional OCTA and was also highly labeled by CD31. The periphery of the pericyte-like scaffold appeared to develop into subretinal fibrosis and this region was rich in myofibroblasts. Enface OCTA was unable to detect the entire area of laser-induced CNV in mice, with an undetectable portion located beneath the fibrotic periphery of the pericyte-like scaffold. Due to this OCTA fibrosis artifact, OCTA imaging has limited potential for accurately estimating CNV lesions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。