Conclusions/interpretation
The present characterisation of the development of diabetic retinopathy in the ob/ob mouse represents a platform that will enable the development of new therapies, particularly for the early stages of disease.
Methods
Male and female wild-type (+/+), heterozygous (+/-) and homozygous (-/-) BTBR ob/ob mice were examined at 6, 10, 15 and 20 weeks of age. Animals were weighed and blood glucose was measured. TUNEL and brain-specific homeobox/POU domain protein 3A (BRN3A) markers were used to examine retinal ganglion cells. We used immunostaining (collagen IV and platelet endothelial cell adhesion molecule [PECAM]/CD31) to reveal retinal vessel degeneration. Spectral domain optical coherence tomography was used to reveal changes in the thickness and structure of the retinal layer. Vitreous fluorophotometry was used to investigate vascular permeability. A-waves, b-waves and oscillatory potentials were measured under photopic and scotopic conditions. Concanavalin A leucostasis and immunostaining with glial fibrillary acidic protein (GFAP) and ionised calcium-binding adapter molecule 1 (IBA-1) identified differences in inflammatory status. Paraffin sections and transmission electron microscopy were used to reveal changes in the thickness and structure of the retinal layer.
Results
Following the development of obesity and hyperglycaemia in 2-week-old and 3-week-old ob-/ob- mice, respectively (p < 0.001), early functional deficits (p < 0.001) and thinning of the inner retina (p < 0.001) were identified. Glial activation, leucostasis (p < 0.05) and a shift in microglia/macrophage phenotype were observed before microvascular degeneration (p < 0.05) and elevated vascular permeability occurred (p < 0.05). Conclusions/interpretation: The present characterisation of the development of diabetic retinopathy in the ob/ob mouse represents a platform that will enable the development of new therapies, particularly for the early stages of disease.
