The temporal and spatial profiles of cell loss following experimental spinal cord injury: effect of antioxidant therapy on cell death and functional recovery

实验性脊髓损伤后细胞损失的时间和空间特征:抗氧化疗法对细胞死亡和功能恢复的影响

阅读:6
作者:Xiang Ling, Feng Bao, Hao Qian, Danxia Liu

Background

Traumatic spinal cord injury (SCI)-induced overproduction of endogenous deleterious substances triggers secondary cell death to spread damage beyond the initial injury site. Substantial experimental evidence supports reactive species (RS) as important mediators of secondary cell death after SCI. This study established quantitative temporal and spatial profiles of cell loss, characterized apoptosis, and evaluated the effectiveness of a broad spectrum RS scavenger - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) and a combination of MnTBAP plus nitro-L-arginine to prevent cell loss and neurological dysfunction following contusion SCI to the rat spinal cord.

Conclusions

Our temporal and spatial profiles of cell loss provide data bases for determining the time and location for pharmacological intervention. Our demonstration that apoptosis follows SCI and that MnTBAP alone or MnTBAP + nitro-L-arginine significantly reduces apoptosis correlates SCI-induced apoptosis with RS overproduction. MnTBAP significantly improved functional recovery, which strongly supports the important role of antioxidant therapy in treating SCI and the candidacy of MnTBAP for such treatment.

Results

By counting the number of surviving cells in spinal cord sections removed at 1, 6, 12, 24, 48, 72 h and 1 week post-SCI and at 0 - 4 mm from the epicenter, the temporal and spatial profiles of motoneuron and glia loss were established. Motoneurons continued to disappear over a week and the losses decreased with increasing distance from the epicenter. Significant glia loss peaked at 24 to 48 h post-SCI, but only at sections 0-1.5 mm from the epicenter. Apoptosis of neurons, motoneurons and astrocytes was characterized morphologically by double immuno-staining with cell-specific markers and apoptosis indicators and confirmed by transmission electron microscopy. DNA laddering, ELISA quantitation and caspase-3 activation in the spinal cord tissue indicated more intense DNA fragments and greater caspase-3 activation in the epicenter than at 1 and 2 cm away from the epicenter or the sham-operated sections. Intraperitoneal treatment with MnTBAP + nitro-L-arginine significantly reduced motoneuron and cell loss and apoptosis in the gray and white matter compared with the vehicle-treated group. MnTBAP alone significantly reduced the number of apoptotic cells and improved functional recovery as evaluated by three behavioral tests. Conclusions: Our temporal and spatial profiles of cell loss provide data bases for determining the time and location for pharmacological intervention. Our demonstration that apoptosis follows SCI and that MnTBAP alone or MnTBAP + nitro-L-arginine significantly reduces apoptosis correlates SCI-induced apoptosis with RS overproduction. MnTBAP significantly improved functional recovery, which strongly supports the important role of antioxidant therapy in treating SCI and the candidacy of MnTBAP for such treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。