Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry

神经元间特异性细胞提供的树突状抑制控制着海马反馈抑制回路的发放率和时间

阅读:6
作者:Leonid Tyan, Simon Chamberland, Elise Magnin, Olivier Camiré, Ruggiero Francavilla, Linda Suzanne David, Karl Deisseroth, Lisa Topolnik

Abstract

In cortical networks, different types of inhibitory interneurons control the activity of glutamatergic principal cells and GABAergic interneurons. Principal neurons represent the major postsynaptic target of most interneurons; however, a population of interneurons that is dedicated to the selective innervation of GABAergic cells exists in the CA1 area of the hippocampus. The physiological properties of these cells and their functional relevance for network computations remain unknown. Here, we used a combination of dual simultaneous patch-clamp recordings and targeted optogenetic stimulation in acute mouse hippocampal slices to examine how one class of interneuron-specific (IS) cells controls the activity of its GABAergic targets. We found that type 3 IS (IS3) cells that coexpress the vasoactive intestinal polypeptide (VIP) and calretinin contact several distinct types of interneurons within the hippocampal CA1 stratum oriens/alveus (O/A), with preferential innervation of oriens-lacunosum moleculare cells (OLMs) through dendritic synapses. In contrast, VIP-positive basket cells provided perisomatic inhibition to CA1 pyramidal neurons with the asynchronous GABA release and were not connected with O/A interneurons. Furthermore, unitary IPSCs recorded at IS3-OLM synapses had a small amplitude and low release probability but summated efficiently during high-frequency firing of IS3 interneurons. Moreover, the synchronous generation of a single spike in several IS cells that converged onto a single OLM controlled the firing rate and timing of OLM interneurons. Therefore, dendritic inhibition originating from IS cells is needed for the flexible activity-dependent recruitment of OLM interneurons for feedback inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。