In Vitro Antibacterial Activity of Rhodanine Derivatives against Pathogenic Clinical Isolates

若丹宁衍生物对临床致病分离菌的体外抗菌活性

阅读:6
作者:Ahmed AbdelKhalek, Charles R Ashby Jr, Bhargav A Patel, Tanaji T Talele, Mohamed N Seleem

Abstract

Bacterial infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibacterial drugs. Therefore, new bacterial targets and new antimicrobials are unmet medical needs. Rhodanine derivatives have been shown to possess potent antimicrobial activity via a novel mechanism. However, their potential use as antibacterials has not been fully examined. In this study, we determined the spectrum of activity of seven rhodanine derivatives (compounds Rh 1-7) against clinical isolates of Gram-positive and Gram-negative bacterial strains and Candida albicans. We also synthesized and tested three additional compounds, ethyl ester and amide of rhodanine 2 (Rh 8 and Rh 10, respectively) and ethyl ester of rhodanine 3 (Rh 9) to determine the significance of the carboxyl group modification towards antibacterial activity and human serum albumin binding. A broth microdilution assay confirmed Rh 1-7 exhibit bactericidal activity against Gram-positive pathogens. Rh 2 had significant activity against various vancomycin-resistant (MIC90 = 4 μM) and methicillin-resistant (MIC90 = 4 μM) Staphylococcus aureus (VRSA and MRSA), Staphylococcus epidermidis (MIC = 4 μM) and vancomycin-resistant Enterococcus (VRE) strains (MIC90 = 8 μM). The rhodanine compounds exhibited potent activity against Bacillus spp., including Bacillus anthracis, with MIC range of 2-8 μM. In addition, they had potent activity against Clostridium difficile. The most potent compound, Rh 2, at 4 and 8 times its MIC, significantly decreased S. epidermidis biofilm mass by more than 35% and 45%, respectively. None of the rhodanine compounds showed antimicrobial activity (MIC > 128 μM) against various 1) Gram-negative pathogens (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, and Salmonella Typhimurium) or 2) strains of Candida albicans (MIC > 64 μM). The MTS assay confirmed that rhodanines were not toxic to mouse murine macrophage (J774.1A) up to 64 μM, human keratinocytes (HaCat) up to 32 μM, and human ileocecal colorectal cell (HRT-18) up to 128 μM. Overall, these data suggest that certain rhodanine compounds may have potential use for the treatment of several multidrug-resistant Gram-positive bacterial infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。