Metabolomics and microscopic profiling of flaxseed meal- incorporated Peda

亚麻籽粉掺入 Peda 的代谢组学和微观分析

阅读:8
作者:Sachin Maurya, Tarun Verma, Ankur Aggarwal, Manish Kumar Singh, Abhishek Dutt Tripathi, Ankur Trivedi

Abstract

Functional dairy foods are in high demand due to their convenience, enhanced nutrition, intriguing flavors, and natural ingredients. The valorization of flaxseed by-products can potentially boost the functionality of these foods. This work involves the optimization of flaxseed meal powder (2%, 2.5%, 3%) during Peda preparation based on sensory and textural attributes. The optimized Peda (2%) exhibited significantly reduction in moisture (39.6%) and water activity (18.9%), while significantly increasing crude fiber (1.88%), protein (26.4%), fat (8%) and DPPH inhibition (274.5%) as compared to control Peda. Scanning electron microscopy of the optimized Peda revealed the surface displayed a dense, uneven texture, heavily coated with fat, and intergranular spaces filled with milk serum. Twenty-three primary compounds were recognized in high-resolution mass spectrometry (HR-MS), including 6 organic acids, 6 amino acids, 3 fatty acids, 3 other metabolite derivatives, 2 lipids, 2 bioactive components, and 1 sugar. Besides gas chromatography mass spectrometry (GC-MS) found six separate types of fatty acids. These compounds have been proven to possess various bioactivities, such as promoting brain activity, antioxidant, anti-diabetic, anti-inflammatory, cardiovascular-protective effects, etc. Flaxseed meal, as a plant-based substitute for dairy ingredients, offers a sustainable and healthy alternative, making flaxseed-incorporated Peda a functional food.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。