Curcumae radix Reduces Endoplasmic Reticulum Stress in Mice with Chronic Neuroinflammation

姜黄根可减轻慢性神经炎症小鼠的内质网应激

阅读:4
作者:Seong-Lae Jo, Hyun Yang, Hye Won Lee, Eui-Ju Hong

Abstract

Endoplasmic reticulum (ER) stress is a condition in which the ER protein-folding machinery is impaired, leading to the accumulation of improperly folded proteins and triggering an unfolded-protein response. Excessive ER stress causes cell death and contributes to the development of chronic diseases. Interestingly, there is a bidirectional relationship between ER stress and the nuclear factor-kappa B (NF-κB) pathway. Curcumin, a natural polyphenolic compound found in Curcumae radix, exerts its neuroprotective effects by regulating ER stress and inflammation. Therefore, investigating the potential protective and regulatory effects of curcumin on ER stress, inflammation, and neurodegeneration under chronic neuroinflammatory conditions is of great interest. Mice were pretreated with Curcumae radix extract (CRE) for 19 days and then treated with CRE plus lipopolysaccharide for 1 week. We monitored pro-inflammatory cytokine levels in the serum and ER stress-, inflammation-, and neurodegeneration-related markers in the mouse cerebrum and hippocampus using Western blotting and qRT-PCR. CRE reduced Interleukin-1 beta levels in the blood and brain of mice with lipopolysaccharide-induced chronic inflammation. CRE also suppressed the expression of markers related to the ER stress and NF-κB signaling pathways. The expression of neurodegeneration-related markers was reduced in the mouse cerebrum and hippocampus. CRE exerts neuroprotective effects under chronic inflammatory conditions via multifaceted anti-inflammatory and ER stress-pathway regulatory mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。