Crystal Forms of the Antihypertensive Drug Irbesartan: A Crystallographic, Spectroscopic, and Hirshfeld Surface Analysis Investigation

抗高血压药物厄贝沙坦的晶体形式:晶体学、光谱和赫什菲尔德表面分析研究

阅读:5
作者:Andrea Mariela Araya-Sibaja, Cinira Fandaruff, Ana María Guevara-Camargo, Felipe Vargas-Huertas, William J Zamora, José Roberto Vega-Baudrit, Teodolito Guillén-Girón, Mirtha Navarro-Hoyos, Paola Paoli, Patrizia Rossi, William Jones

Abstract

The design of new pharmaceutical solids with improved physical and chemical properties can be reached through in-detail knowledge of the noncovalent intermolecular interactions between the molecules in the context of crystal packing. Although crystallization from solutions is well-known for obtaining new solids, the effect of some variables on crystallization is not yet thoroughly understood. Among these variables, solvents are noteworthy. In this context, the present study aimed to investigate the effect of ethanol (EtOH), acetonitrile (MeCN), and acetone (ACTN) on obtaining irbesartan (IBS) crystal forms with 2,3-dibromosuccinic acid. Crystal structures were solved by single-crystal diffraction, and the intermolecular interactions were analyzed using the Hirshfeld surfaces analysis. The characterization of physicochemical properties was carried out by powder X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), thermal analysis, and solution-state NMR techniques. Two different IBS salts were obtained, one from MeCN and ACTN (compound 1) and a different one from EtOH (compound 2). The experimental results were in agreement with the findings obtained through quantum mechanics continuum solvation models. Compound 1 crystallized as a monoclinic system P21/c, whereas compound 2 in a triclinic system P1̅. In both structures, a net of strong hydrogen bonds is present, and their existence was confirmed by the FT-IR results. In addition, the IBS cation acts as a H-bond donor through the N1 and N6 nitrogen atoms which interact with the bromide anion and the water molecule O1W in compound 1. Meanwhile, N1 and N6 nitrogen atoms interact with the oxygen atoms provided by two symmetry-related 2,3-dibromo succinate anions in compound 2. Solution-state NMR data agreed with the protonation of the imidazolone ring in the crystal structure of compound 1. Both salts presented a different thermal behavior not only in melting temperature but also in thermal stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。