NPRL2 promotes docetaxel chemoresistance in castration resistant prostate cancer cells by regulating autophagy through the mTOR pathway

NPRL2 通过 mTOR 通路调节自噬,促进去势抵抗性前列腺癌细胞对多西他赛产生化学耐药性

阅读:4
作者:Shengjun Luo, Lan Shao, Zhixiong Chen, Daixing Hu, Li Jiang, Wei Tang

Abstract

Docetaxel-based chemotherapy is recommended for metastatic castration-resistant prostate cancer (mCRPC). However, chemoresistance is inevitable and eventually progresses after several rounds of chemotherapy. Therefore, exploration of new therapeutic targets and molecular mechanisms that contribute to chemoresistance remains necessary. Our previous study accidentally demonstrated that expression of nitrogen permease regulator-like 2 (NPRL2), which is defined as a tumor suppressor, is upregulated in prostate cancer (PCa) and linked to poor prognosis, particularly in CRPC. The aim of this study was to investigate the role of NPRL2 in the chemoresistant CRPC cells. We found that NPRL2 was significantly overexpressed in docetaxel-resistant CRPC cells, while autophagy was enhanced and mTOR signaling was inhibited. Inhibiting NPRL2 increased the sensitivity to docetaxel in docetaxel-resistant CRPC cells, enhanced apoptosis and inhibited autophagy, and the opposite trends were observed when the mTOR inhibitor torin 1 was added to NPRL2-silenced cells. We further found that NPRL2 silenced docetaxel-resistant CRPC cells were sensitive to docetaxel in vivo. Briefly, our research reveals that overexpression of NPRL2 promotes chemoresistance by regulating autophagy via mTOR signaling and inhibits apoptosis in CRPC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。