Assaying activity-dependent arteriole and capillary responses in brain slices

测定脑切片中活动依赖性小动脉和毛细血管反应

阅读:4
作者:Danica Bojovic, Teresa L Stackhouse, Anusha Mishra

Aim

Our goal is to describe a protocol for concurrently monitoring stimulation-evoked neuronal activity and resultant vascular responses in acute brain slices. Approach: We describe a step-by-step protocol that allows the study of endogenous NVC mechanisms engaged by neuronal activity in a controlled, reduced preparation.

Conclusions

The ex vivo NVC assay will facilitate investigations of cellular and molecular mechanisms that give rise to NVC and should serve as a valuable complement to in vivo imaging methods.

Results

This ex vivo NVC assay allows researchers to disentangle the mechanisms regulating the contractile responses of different vascular segments in response to neuronal firing independent of flow and pressure mediated effects from connected vessels. It also enables easy pharmacological manipulations in a simplified, reduced system and can be combined with Ca2+Ca2+<math> <mrow><msup><mi>Ca</mi> <mrow><mn>2</mn> <mo>+</mo></mrow> </msup> </mrow> </math> imaging or broader electrophysiology techniques to obtain multimodal data during NVC. Conclusions: The ex vivo NVC assay will facilitate investigations of cellular and molecular mechanisms that give rise to NVC and should serve as a valuable complement to in vivo imaging methods.

Significance

Neurovascular coupling (NVC) is the process that increases cerebral blood flow in response to neuronal activity. NVC is orchestrated by signaling between neurons, glia, and vascular cells. Elucidating the mechanisms underlying NVC at different vascular segments and in different brain regions is imperative for understanding of brain function and mechanisms of dysfunction. Aim: Our goal is to describe a protocol for concurrently monitoring stimulation-evoked neuronal activity and resultant vascular responses in acute brain slices. Approach: We describe a step-by-step protocol that allows the study of endogenous NVC mechanisms engaged by neuronal activity in a controlled, reduced preparation. Results: This ex vivo NVC assay allows researchers to disentangle the mechanisms regulating the contractile responses of different vascular segments in response to neuronal firing independent of flow and pressure mediated effects from connected vessels. It also enables easy pharmacological manipulations in a simplified, reduced system and can be combined with Ca2+Ca2+<math> <mrow><msup><mi>Ca</mi> <mrow><mn>2</mn> <mo>+</mo></mrow> </msup> </mrow> </math> imaging or broader electrophysiology techniques to obtain multimodal data during NVC. Conclusions: The ex vivo NVC assay will facilitate investigations of cellular and molecular mechanisms that give rise to NVC and should serve as a valuable complement to in vivo imaging methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。